The Inverse Function Theorem
{y1=f1(x1,x2,...,xn)y2=f2(x1,x2,...,xn)⋯yn=fn(x1,x2,...,xn)
fi∈C1 ∀i 라고 하자.
(x0,y0)에 대하여 f(x0,y0)=0 이라고 하자.
Jacobian J=∂(f1,f2,...,fn)∂(x1,x2,...,xn)=|∂f1∂x1∂f1∂x2⋯∂f1∂xn∂f2∂x1∂f2∂x2⋯∂f2∂xn⋮⋮⋱∂fn∂x1∂fn∂x2⋯∂fn∂xn|≠0 이라고 하자.
Define
{F1(y1,y2,...,yn,x1,x2,...,xn)=f1(x1,x2,...,xn)−y1F2(y1,y2,...,yn,x1,x2,...,xn)=f2(x1,x2,...,xn)−y2⋯Fn(y1,y2,...,yn,x1,x2,...,xn)=fn(x1,x2,...,xn)−yn
By the implicit function theorem, we have unique functions xi=gi(y1,y2,...,yn) near y0 which are C1.
{x1=g1(y1,y2,...,yn)x2=g2(y1,y2,...,yn)⋯xn=gn(y1,y2,...,yn)
다른 말로, (x0,y0) 근방에서
{y1=f1(x1,x2,...,xn)y2=f2(x1,x2,...,xn)⋯yn=fn(x1,x2,...,xn)⇔{x1=g1(y1,y2,...,yn)x2=g2(y1,y2,...,yn)⋯xn=gn(y1,y2,...,yn)
가 성립한다.
'Math > Calculus' 카테고리의 다른 글
Cauchy's mean value theorem (0) | 2022.04.17 |
---|---|
Finding Extrema (0) | 2022.04.16 |
직선의 direction vector 찾기 (0) | 2022.04.16 |
The Implicit Function Theorem (0) | 2022.04.15 |
Total derivative (0) | 2022.04.15 |