total deriavtive
total derivative $Df$는 matrix이자 linear transformation이다.
1. ML에선 분모 중심 표기법을 쓴다. ( row index = 변수의 index )
$\begin{align*}Df = \begin{bmatrix}\frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \\ \end{bmatrix} \end{align*} $
2. 수학에선 분자 중심 표기법을 쓴다. ( row index = 함수의 index )
$\begin{align*}Df = \begin{bmatrix}\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \\ \end{bmatrix} \end{align*} $
Chain Rule
$D_{a}(f\circ g) = D_{g(a)}f \circ D_a g$
example
$\frac{df}{dt} = \begin{bmatrix}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\end{bmatrix} \begin{bmatrix}
\frac{dx}{dt} \\
\frac{dy}{dt}
\end{bmatrix} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$
'Math > Calculus' 카테고리의 다른 글
Cauchy's mean value theorem (0) | 2022.04.17 |
---|---|
Finding Extrema (0) | 2022.04.16 |
직선의 direction vector 찾기 (0) | 2022.04.16 |
The Inverse Function Theorem (0) | 2022.04.15 |
The Implicit Function Theorem (0) | 2022.04.15 |