$\begin{bmatrix}
x-x_0 \\
y-y_0 \\
z-z_0
\end{bmatrix} = t
\begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix}$ 임을 활용한다.
Example
$z = \frac{\partial f}{\partial x} (x-x_0) + f(x_0, y_0), \quad y - y_0 = 0$ 의 direction vector를 구해보자.
$tv_3 = \frac{\partial f}{\partial x} (tv_1), \quad tv_2 = 0$
$v_3 = \frac{\partial f}{\partial x} (v_1), \quad v_2 = 0$
$\therefore v = (1, 0, \frac{\partial f}{\partial x})$
'Math > Calculus' 카테고리의 다른 글
Cauchy's mean value theorem (0) | 2022.04.17 |
---|---|
Finding Extrema (0) | 2022.04.16 |
The Inverse Function Theorem (0) | 2022.04.15 |
The Implicit Function Theorem (0) | 2022.04.15 |
Total derivative (0) | 2022.04.15 |