Homogeneous system
Definition
Ax = 0 is called homogeneous.
Note
A homogeneous system always has the trivial solution x = 0.
Thm
If a homogeneous system has a non-zero solution, then it has $\infty$ solutions.
proof. Let $x_0$ be a solution. Then $\alpha x_0$ is also a solution. $\square$
Summary
In general, we have no / unique / $\infty$ solutions for sys of lin eqs.
For a homogeneous system, we have unique(x=0) / $\infty$ solutions.
Note
1. Ax=b has $\infty$ solutions $\Rightarrow$ so does Ax=0
2. Ax=b has a unique solution $\Rightarrow$ so does Ax=0
참고
Ax=b has no solution $\not\Rightarrow$ Ax = 0 has $\infty$ solution.
rank(A) $\leq$ n
rank(A|b) $\leq$ n+1
rank(A) = n < n+1 = rank(A|b) 인 경우, Ax = 0 은 unique solution 가진다.
rank(A) < n 인 경우, Ax = 0 은 $\infty$ solution 가진다.
Thm
If $x_0$ is a specific solution of Ax=b, then
Sol(Ax=b) = $x_0$ + Sol(Ax=0)
여기서 Sol(equation) 은 solution set of the equation을 의미하는 나만의 기호.
Sol(equation) = $\{x | equation\}$
e.g.
(x, x-3, 5-x, 1) : general solution of Ax=b / (0, -3, 5, 1) : specific solution of Ax=b
(x, x-3, 5-x, 1) = (0, -3, 5, 1) + (x, x, -x, 0)
$\therefore$ (x, x, -x, 0) : general solution of Ax=0
proof.
Ax=b, A$x_0$ = b $\Rightarrow$ A(x-$x_0$) = 0.
Ax=0, A$x_0$ = b $\Rightarrow$ A(x+$x_0$) = b. $\square$
Note
Ax = b가 해를 가질 때, Ax = b와 Ax = 0의 해집합이 같으니까 해의 개수도 당연히 같다.
결론
Thm 만 기억하면 된다!
'Math > Linear Algebra' 카테고리의 다른 글
The number of solutions in a system of linear equations (0) | 2022.03.31 |
---|---|
Reduced Row Echelon Form (RREF) - Python (0) | 2022.03.31 |